设(M^3,90)是非紧三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。
Let (M^3, go) be a complete noncompact Riemannian 3-manifold with nonnegative Ricci curvature and with iajectivity radius bounded away from zero. Suppose that the scalar curvature R(x)→ 0 as x → ∞. Then the Ricci flow with initial data (M^3, go) has a long time solution on M^3 × [0, ∞). This extends a recent result of Ma and Zhu. We also have a higher dimensional version, and we reprove a Kahler analogue due to Chau, Tam and Yu.