位置:成果数据库 > 期刊 > 期刊详情页
一种基于多视图数据的半监督特征选择和聚类算法
  • ISSN号:1004-9037
  • 期刊名称:《数据采集与处理》
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国科学技术大学计算机科学与技术学院,合肥230027
  • 相关基金:国家自然科学基金(61375060)资助项目; 中央高校基本科研业务费专项资金(WK0110000036)资助项目
中文摘要:

高维数据中许多特征之间互不相关或冗余,这给传统的学习算法带来了巨大的挑战。为了解决该问题,特征选择应运而生。与此同时,许多实际问题中数据存在多个视图而且数据的标签难以获取,多视图学习和半监督学习成为机器学习中的热点问题。本文研究怎样从"部分标签"的多视图数据中选择最大相关最小冗余的特征子集,提出一种基于多视图的半监督特征选择方法。为了剔除冗余和无关的特征,探索蕴含于多视图数据中的互补信息以及每个视图中不同特征之间的冗余关系,并利用少量标签数据蕴含的信息协同未标签数据同时进行特征选择。实验结果验证了本算法能够获得很好的特征选择效果及聚类效果。

英文摘要:

Lots of features in high-dimensional data are redundant or irrelevant.To tackle this problem,the concept of feature selection is introduced.In the meantime,many problems in machine learning involve examples that are naturally comprised of multiple views and with a limited number of labels.Multiview learning and semi-supervised learning become the hotspots in machine learning.Hence authors investigate how to select relevant features with minimum redundancy from multi-view data with a limited number of labels,and propose a semi-supervised feature selection and clustering framework.To remove redundant and irrelevant features,authors exploit relations among views and relations among features in each view,and use a limited number of labeled data to help feature selection.The proposed framework in multi-view datasets is systematically evalated,and the results demonstrate the effectiveness and potential of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数据采集与处理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会 仪器仪表学会 信号处理学会 中国一汽仪表学会 中国物理学会 微弱信号检测学会 南京航空航天大学
  • 主编:贲德
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:sjcj@nuaa.edu.cn
  • 电话:025-84892742
  • 国际标准刊号:ISSN:1004-9037
  • 国内统一刊号:ISSN:32-1367/TN
  • 邮发代号:28-235
  • 获奖情况:
  • 中国科技论文统计源用刊,2007年被评为江苏省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8148