林冠是生物圈中物种最丰富却最鲜为人知的生境之一。它在森林与大气的物质、能量交换过程中发挥着至关重要的作用。但因林冠调查技术的限制,林冠及生存在其中的附生植物在生态系统中的功能尚未得到足够的重视。塔吊在三维空间中作业具有"全方位、高精度、非破坏、可重复"的特征。林冠塔吊已成为当前林冠学研究的标志,并为林冠附生植物研究提供了契机。国际上,欧美国家利用塔吊技术对林冠层附生植物多样性与空间分布等进行了大量的研究,取得了丰硕的成果。该文介绍了塔吊的构造、林冠塔吊建设历史和站点分布及国际林冠研究组织等概况,并对依托塔吊开展的附生植物研究进展进行了评述。此外,还简要介绍了我国塔吊建设与林冠生态学发展情况。在系统分析国内外附生植物研究现状基础上,从附生植物多样性、附生植物空间格局与维持机制、生态适应性、与林冠动物的关系以及附生植物对气候变化的响应等5个方面对今后基于林冠塔吊开展附生植物研究进行了展望。
Forest canopies are one of the most species-rich habitats, but among the least explored in the biosphere. They play a crucial role in the process of material and energy exchange between the forest and atmosphere. Individual ecosystem members(e.g., epiphytes) and the ecological function of canopies have been given insufficient attention because of inaccessibility. Canopy cranes have been successfully used to guarantee non-destructive and reiterated sampling of epiphytes, thus offering a top-down perspective of the entire canopy. These cranes have become the symbol of canopy research and enable epiphyte research. Globally, western developed countries have conducted many studies of diversity and spatial distributions of epiphytes using canopy cranes, thus accumulating an abundance of valuable results. This review summarizes the structure, development history, and distribution of canopy cranes as well as general information about international canopy research organizations. Ecological studies of epiphytes performed around the world using these canopy cranes are also reviewed. Additionally, the development of canopy ecology and the construction of canopy cranes in China are introduced briefly. In analyzing current research trends in ecological studies of epiphytes in China and globally, the following aspects were considered: biodiversity, spatial patterns and maintenance mechanisms, ecological adaptations of epiphytes, their relationship with canopy animals, and their responses to climate change.