欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
The Lower/Upper Bound Property of the Crouzeix–Raviart Element Eigenvalues on Adaptive Meshes
期刊名称:J Sci Comput
时间:2015
页码:284-299
相关项目:特征值问题的有限元高效计算方法
作者:
Yidu Yang|Jiayu Han|Hai Bi|Yuanyuan Yu|
同期刊论文项目
特征值问题的有限元高效计算方法
期刊论文 25
会议论文 2
著作 1
同项目期刊论文
关于非协调元可计算上界后验误差估计的一个注记
方程-△u=λρu的Han元特征值渐近展开
The extrapolation of numerical eigenvalues by finite elements for differential operators
The adaptive finite element method based on multi-scale discretizations for eigenvalue problems
A class of spectral element methods and its a priori/a posteriori error estimates for 2nd order elli
Local and parallel finite element discretizations for eigenvalue problems
Spectral element approximation for the eigenvalue problem of hydrogen atoms electronic structure
Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations
Multi-grid discretization and iterative algorithm for mixed variational formulation of the eigenvalu
Highly efficient calculation schemes of finite element filter approach for the eigenvalue problem of
A two-scale discretization scheme for mixed variational formulation of eigenvalue problems
Local and parallel finite element method for Laplace eigenvalue problem
A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetr
The Lower/Upper Bound Property of the Crouzeix–Raviart Element Eigenvalues on Adaptive Mes
An adaptive nonconforming finite element algorithm for Laplace eigenvalue problem
A posteriori error estimates for a Steklov eigenvalue eigenvalue problem
Multilevel finite element discretizations based on local defect correction for nonsymmetric eigenval
THE SHIFTED-INVERSE ITERATION BASED ON THE MULTIGRID DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
A New Adaptive Mixed Finite Element Method Based on Residual Type A Posterior Error Estimates for th
The multilevel mixed finite element discretizations based on local defect-correction for the Stokes
Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov
关于非协调Q^rot 1元可计算上界后验误差估计的一个注记