A printed TEM horn antenna with high gain fed by balanced microstrip line is proposed. The radiation part of the antenna consists of two symmetrical triangular metal slice branches printed on the FR-4 substrate with 15 mm thickness. The two branches are fed by balanced microstrip line. The antenna is simulated by software CST MICROWAVE STUDIO and the equivalent adopted dipole model is proposed to describe the radiation characteristic of the antenna. The simulation results indicate that the frequency range is from 164 GHz to 5 GHz with reflection coefficient less than -6 dB, and the typical gain value is 8 dB in the operating bandwidth. In order to improve antenna gain without influencing the bandwidth, the length of the dielectric slab should be extended appropriately in the main radiation direction. By extending the length of the dielectric slab appropriately in the main radiation direction, the antenna gain can be improved significantly without the influence on the bandwidth. Besides, a metal disc loaded in the radiation direction makes the gain in band be more stable. The prototype has been fabricated and measured in microwave anechoic chamber which is coincident with the simulation results. This antenna can be widely applied in the UWB field.
A printed TEM horn antenna with high gain fed by balanced microstrip line is proposed. The radia- tion part of the antenna consists of two symmetrical triangular metal slice branches printed on the FR-4 substrate with 1.5 mrn thickness. The two branches are fed by balanced mierostrip line. The antenna is simulated by soft- ware CST MICROWAVE STUDIO and the equivalent adopted dipole model is proposed to describe the radia- tion characteristic of the antenna. The simulation results indicate that the frequency range is from 1.64 GHz to 5 GHz with reflection coefficient less than -6 dB, and the typical gain value is 8 dB in the operating band- width. In order to improve antenna gain without influencing the bandwidth, the length of the dielectric slab should be extended appropriately in the main radiation direction. By extending the length of the dielectric slab appropriately in the main radiation direction, the antenna gain can be improved significantly without the influ- ence on the bandwidth. Besides, a metal disc loaded in the radiation direction makes the gain in band be more stable. The prototype has been fabricated and measured in microwave anechoic chamber which is coincident with the simulation results. This antenna can be widely applied in the UWB field.