位置:成果数据库 > 期刊 > 期刊详情页
一种基于压缩感知的邻域优化算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116081, [2]大连理工大学电子信息与电气工程学部,辽宁大连116024
  • 相关基金:国家自然科学基金资助项目(61105085)
中文摘要:

非线性降维方法是目前对降维研究有着重要影响的方法,但在降维过程中经常会遇到局部邻域信息量不足、短路和噪声干扰等问题,严重影响降维效果,很难广泛应用于真实数据的处理中。对以上问题分析发现,其主要原因在于经典降维算法都是采用全局固定的邻域大小。提出了一种基于压缩感知的邻域优化算法,运用压缩感知技术对高维空间目标点近邻进行压缩采样,构建“收一放”模型,自适应得到最优子空间,同时优化邻域组成元素,使得数据的整体降维效果更加稳定。通过手工流形和真实数据集的实验,验证了算法的有效性和稳定性。

英文摘要:

The non-linear dimension reduction method is an important aspect in dimension reduction domain. However, for neighbor selection, it' s still difficult to deal with problems such as lack of sufficient information, short circuit and noise ete, which seriously affect the effect of dimensionality reduction. Thus, the application of neighbor selection is limited in practice. This paper analyzed the theory of compressive sensing and the mechanism of neighborhood structure in depth and proposed a new optimization algorithm for neighbor selection. Meanwhile, it constructed a model of "compression and amplification" , which could calculate the optimal subspaee from high dimension data. The new constructed model ensured the scale of the neighborhood of data and the global effect of dimensionality reduction of data was more stable. Experiments with artificial umni- fold and a real-world dataset verify the effectiveness and stability of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049