DNA origami technique, a breakthrough in DNA nanotechnology, has been widely used to prepare complex DNA nanostructures with nanoscale addressability. However, the purity and yield are generally the bottleneck to application of DNA nanostructures, and current methods for purifying DNA origami nanostructures in large quantities are time-consuming and laborious. This study aims to develop a scalable, cost-effective and contamination-free method of purifying DNA origami nanostructures. We employ an effective and convenient purification approach to purify planar rectangle DNA origami structures through rate-zonal centrifugation. By subjecting DNA origami samples to high centrifugal force in a density gradient media of glycerol, well-folded nanostructures and by-products are separated successfully, which are confirmed by agarose gel electrophoresis and atomic force microscopy(AFM). This method will aid the production of pure rectangle DNA origami nanostructures in large quantity.
DNA origami technique, a breakthrough in DNA nanotechnology, has been widely used to prepare complex DNA nanostructures with nanoscale addressability. However, the purity and yield are generally the bottleneck to application of DNA nanostructures, and current methods for purifying DNA origami nanostructures in large quantities are time-consuming and laborious. This study aims to develop a scalable, cost-effective and contamination-free method of purifying DNA origami nanostructures. We employ an effective and convenient purification approach to purify planar rectangle DNA origami structures through rate-zonal centrifugation. By subjecting DNA origami samples to high centrifugal force in a density gradient media of glycerol, well-folded nanostructures and by-products are separated successfully, which are confirmed by agarose gel electrophoresis and atomic force microscopy(AFM). This method will aid the production of pure rectangle DNA origami nanostructures in large quantity.