位置:成果数据库 > 期刊 > 期刊详情页
基于GRM模型的BP神经网络参数估计
  • ISSN号:1671-6981
  • 期刊名称:心理科学
  • 时间:2014.11.20
  • 页码:1485-1490
  • 分类:B841.2[哲学宗教—基础心理学;哲学宗教—心理学]
  • 作者机构:[1]江西师范大学计算机信息工程学院,南昌330022, [2]江西警察学院公安科技系,南昌330100
  • 相关基金:本研究得到国家自然科学基金(31160203,31360237,61262080)、江西省教育厅科技计划项目(GJJl3209,GJJ13226,GJJ13227,GJJ13208,GJJ132071和江西师范大学青年成长基金的资助.
  • 相关项目:Q矩阵理论的拓展及其在认知诊断中的应用研究
中文摘要:

目前参数估计多采用统计方法,存在耗时长、要求被试样本容量大和项目数多等缺点。本文将BP神经网络和降维法相结合,对GRM的项目参数和考生能力参数进行估计。蒙特卡洛模拟结果显示:(1)不管是人多题少还是题多人少,该网络设计下的参数估计精度都较高;(2)可以应用到多个不同等级评分的参数估计中,甚至是超过15个等级的项目参数,估计精度也较高,这是其他参数估计方法所不可比拟的;(3)运行的时长和统计估计方法相比大大缩减。

英文摘要:

Computerized adaptive testing (CAT) is based on item response theory (IRT) ,which requires a large-scale item bank, and each item in item bank needs item parameters, the item bank of CAT needs to be constantly updated, the item parameters are very important when the bank is constructed and updated. At the present, statistical methods are used for estimating the item parameters, which need to have enough items and examinees, otherwise, it may lack of precision or lead to failure. These limitations are the motivation behind some research to use other adaptive approach to estimate the parameters. Some researchers proposed a novel solution based on back-propagation(BP) neural network to solve the above mentioned limitations. Based on dichotomous model, the parameters were estimated with BP neural network, their study results showed that, for small samples, there are higher precision of the item parameters estimated by neural network than that by statistical methods. Polytomous items can provide more information than dichotomous items, and adopting polytomous items in test is a research direction of CAT. In this paper, the BP neural network and dimension reduction method are adopted to estimate items parameters and examinees ability based on Graded Response Model(GRM) model. First of all, MATLAB toolbox is used to design network, and some factors such as the number of the BP neural network layers, the number of neurons in each layer, and optimal activation function are discussed. In this paper, three layers of the BP neural network is used; each layer neuron number is 4, 12, 1;and S type function 'Tansig' is used in the first and second layer, the third layer used linear 'purelin' function. Then, Monte Carlo simulation are employed to simulate the response matrixes, and the dimensions of response matrixes are reduced as following: the mean score rate of examinee is used to estimate the examinee's ability, the passing rate of every grade of each item is used to estimate the difficul

同期刊论文项目
期刊论文 132 会议论文 18 获奖 10 著作 1
同项目期刊论文
期刊信息
  • 《心理科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术学会
  • 主办单位:中国心理学会
  • 主编:李其维
  • 地址:上海市中山北路3663号
  • 邮编:200062
  • 邮箱:xinlikexue@vip.163.com
  • 电话:021-62232236
  • 国际标准刊号:ISSN:1671-6981
  • 国内统一刊号:ISSN:31-1582/B
  • 邮发代号:4-317
  • 获奖情况:
  • 为国务院学位办审定为核心期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国社科基金资助期刊,中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:46796