位置:成果数据库 > 期刊 > 期刊详情页
基于PCA-WLSSVM的氧化铝苛性比值和溶出率预测模型
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083
  • 相关基金:国家自然科学基金资助项目(60634020)
中文摘要:

针对氧化铝生产过程中无法在线测量苛性比值和溶出率的问题,建立了一种基于PCA-WLSSVM的预测模型.利用主元分析(PCA)消除样本共线性,降低样本维数.根据样本映射点到最小包含超球球心的距离确定样本的权值,以优化最小二乘支持向量机(LS-SVM)的参数,并提高加权LS-SVM的松散性和鲁棒性.仿真结果表明,此模型能有效地在线预测苛性比值及溶出率.

英文摘要:

A prediction model based on PCA-WLSSVM is proposed to online measure the ratio of soda to aluminate (RSA) and the leaching rate (LR) in alumina manufacturing. Principal component analysis (PCA) is used to eliminate redundancy and reduce dimension of the samples. According to the distance from the sample's innuendo point to the core of the least hypersphere containing all the innuendo points, the weights are determined to optimize parameters of the least squares support vector machines (WLS-SVM) and to increase looseness and robustness of the weighted LS-SVM. The simulation result shows that the presented PCA-WLSSVM model can online measure the ratio of soda to aluminate and the leaching rate effectively.

同期刊论文项目
期刊论文 287 会议论文 65 获奖 9 专利 15 著作 2
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960