位置:成果数据库 > 期刊 > 期刊详情页
基于网络流量小波分析的异常检测研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南文理学院计算机科学与技术系,湖南常德415000, [2]清华大学计算机科学与技术系,北京100084
  • 相关基金:国家自然科学基金资助项目(60372019);博士后科学基金资助项目(2003034152)
中文摘要:

网络流量是局域网和广域网的重要特征之一,小波分析能将复杂的非线性网络流量时间序列分解成不同频率的子序列。基于小波分解的思想,利用网络流量的自相似特性来对网络的异常行为进行检测,给出了根据网络流量自相似特征参数的偏差来检测攻击的方法,对不同分辨率下Hurst参数的变化进行了比较分析。在DARPA上的测试结果表明,该方法不仅能够发现网络中存在的突发性流量攻击,还能够确定异常发生的位置。

英文摘要:

Network traffic is one of the key properties in LAN as well as WAN, by wavelet analysis, the complex traffic times series can be decomposed into different frequent components. Based on wavelet decomposed, the self- similar of traffic can be used to detect anomaly behavior of network, a method of detecting attacks based on the deviation of Hurst parameter is presented. The changes of Hurst parameter are analyzed and compared in different time scale. Result shows the proposed approach can detect the possible presence of not only an anomaly, but also its location on data set.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049