The nonclassicality of the two-variable Hermite polynomial state is investigated. It is found that the two-variable Hermite polynomial state can be considered as a two-mode photon subtracted squeezed vacuum state. A compact expression for the Wigner function is also derived analytically by using the Weyl-ordered operator invariance under similar transformations. Especially, the nonclassicality is discussed in terms of the negativity of the Wigner function. Then violations of Bell’s inequality for the two-variable Hermite polynomial state are studied.
The nonclassicality of the two-variable Hermite polynomial state is investigated. It is found that the two-variable Hermite polynomial state can be considered as a two-mode photon subtracted squeezed vacuum state. A compact expression for the Wigner function is also derived analytically by using the Weyl-ordered operator invariance under similar transformations. Especially, the nonclassicality is discussed in terms of the negativity of the Wigner function. Then violations of Bell's inequality for the two-variable Hermite polynomial state are studied.