水下无线传感网络UWSNs被认为是监测海洋最有前景的技术。然而,声信道特性给UWSNs的数据采集提出了挑战。提高UWSNs数据采集效率的有效方式就是融合水下声通信和高动态网络拓扑的特性,设计高性能的路由协议。为此,提出基于地理-机会的水下无线传感网的混合路由,记为GOHR。在GOHR协议中,源节点先计算候选转发节点集,并计算集内每个节点的归一化权重值,再依据归一化权重值对集内节点进行排序,并形成转发节点簇。然后,计算每个簇的期望权重值,最后,选择期望权重值最大的簇内节点作为数据包转发节点。为了避免簇内节点转发数据包时发生碰撞,设置定时延时转发机制。仿真结果表明,提出的GOHR协议提高了数据包传递率,降低了数据包的传输时延。
The underwater wireless sensor networks(UWSNs)are known as the most perspective technology to monitor and explore the oceans. The challenge of acoustic channel characteristics for UWSNs data collection is put forward. The effective way to improve the UWSNs data acquisition efficiency is the fusion of the characteristics of the underwater acoustic communication with highly-dynamic network topology,and design of the high-performance routing protocol. Therefore a geographic and opportunistic hybrid routing(GOHR) for UWSNs is proposed. In which,the source node is used to calculate the candidate forwarding node set,and the normalized weighted value of each node in the set. The node in the set is sorted according to the normalized weighted value to form the forwarding node cluster. The expected weighted value of each cluster is calculated. The cluster node with the highest expected weighted value is selected as the forwarding node of the data package. In order to void the collision when the data package is forwarded for the cluster node,the timing-delay forwarding mechanism is set. The simulation results show that the GOHR protocol can improve the transfer rate of data package,and reduce the transmission delay of data package.