做 Zn 的三氧化钛(TiO_2 ) nanotubes 电极被直接阳极氧化和沉浸的方法在顺序在一个钛盘子上准备。扫描电子显微镜学(FESEM ) 的地排放证明做 Zn 的 TiO_2 nanotubes 很好被排列并且与直径从 50 ~ 90 nm 组织成高密度制服数组。长度和厚度分别地是大约 200 和 15 nm。TiO_2 锐钛矿阶段被 X-raydiffraction (XRD ) 识别。X 光检查 photoelectronspec-troscopy (XPS ) 显示 Zn 离子主要位于 TiO_2 nanotubes 的表面处于良好的竟技状态 ZnO 簇。与 TiO_2 nanotubes 电极相比,在紫外力的吸收的光谱的大约 20 nm 红移动被观察。在在一样下面的水溶液的五氯苯酚(PCP ) 的降级调节(PCP:20 mg/L 的起始的集中;Na_2SO_4 的集中:0.01 mol/L 和酸碱值:7.03 ) 用做 Zn 的 TiO_2nanotubes 被执行电极和 TiO_2 nanotubes 电极。用做 Zn 的 TiO_2nanotubes 电极的 PCP 的降级率被发现分别地是由紫外放射(400 亩 w/cm~2 ) 和可见轻放射(4500 亩 w/cm~2 ) 的两次并且 5.8 倍高于那使用的 TiO_2 nanotubeselectrode。73.5% PCP 用对 48.5% 的 nanotubes 电极在紫外放射下面在 120 min 用 TiO_2 nanotubes 电极移开的做 Zn 的 TiO2 被移开。当时在可见轻放射下面, PCP 的降级效率用对在 120 min 的 3.2%using TiO_2 nanotubes 电极的做 Zn 的 TiO_2 nanotubes 电极是 18.4% 。做的 Zn 的最佳集中被发现到 be0.909% 。由做 Zn 的 TiO_2 nanotubeselectrode 的 10 个重复实验的 PCP 降级效率与在 3.0% 以内的偏差是相当稳定的。
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.