位置:成果数据库 > 期刊 > 期刊详情页
基于多重核的稀疏表示分类
  • ISSN号:0372-2112
  • 期刊名称:电子学报
  • 时间:2014.9.15
  • 页码:1807-1811
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算机科学与技术学院,安徽合肥 230601, [2]安徽省工业图像处理与分析重点实验室,安徽合肥230039
  • 相关基金:国家自然科学基金项目(No.61202228,No.61073116);高等学校博士科学点专项科研基金联合资助课题(No.20103401120005);安徽省高校自然科学研究重点项目(No.KJ2012A004)
  • 相关项目:图像识别中区分性稀疏表示理论与方法研究
中文摘要:

稀疏表示分类(SRC )及核方法在模式识别的很多问题中都得到了成功的运用。为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC )方法。提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明。对于多重核的权重给出了两种自动更新方式并进行了分析与比较。在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性。

英文摘要:

Sparse representation based classification (SRC) and kernel methods are applied in many pattern recognition prob-lems .In order to improve the classification accuracy ,we propose multiple kernel sparse representation based classification (MK-SRC) .A fast optimization iteration method to solve sparse coefficients and the associated convergence proof to global optimal solu-tion are given .In order to update the kernel weights of MKSRC ,two different updating methods and the associated comparison are given .The experimental results on three face image databases show the superiority of the proposed multiple kernel sparse representa-tion based classification .

同期刊论文项目
期刊论文 59 会议论文 9
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611