位置:成果数据库 > 期刊 > 期刊详情页
NONLINEAR INTERNAL RESONANCE OF FUNCTIONALLY GRADED CYLINDRICAL SHELLS USING THE HAMILTONIAN DYNAMICS
  • ISSN号:0894-9166
  • 期刊名称:《固体力学学报:英文版》
  • 时间:0
  • 分类:O316[理学—一般力学与力学基础;理学—力学] O322[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1]School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China, [2]School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 11072204 and 11372257).
中文摘要:

Internal resonance in nonlinear vibration of functionally graded(FG) circular cylindrical shells in thermal environment is studied using the Hamiltonian dynamics formulation. The material properties are considered to be temperature-dependent. Based on the K′arm′an-Donnell’s nonlinear shell theory, the kinetic and potential energy of FG cylindrical thin shells are formulated. The primary target is to investigate the two-mode internal resonance, which is triggered by geometric and material parameters of shells. Following a secular perturbation procedure, the underlying dynamic characteristics of the two-mode interactions in both exact and near resonance cases are fully discussed. It is revealed that the system will undergo a bifurcation in near resonance case, which induces the dynamic response at high energy level being distinct from the motion at low energy level. The effects of temperature and volume fractions of composition on the exact resonance condition and bifurcation characteristics of FG cylindrical shells are also investigated.

英文摘要:

Internal resonance in nonlinear vibration of functionally graded (FG) circular cylin- drical shells in thermal environment is studied using the Hamiltonian dynamics formulation. The material properties are considered to be temperature-dependent. Based on the Karman-Donnell's nonlinear shell theory, the kinetic and potential energy of FG cylindrical thin shells are formu- lated. The primary target is to investigate the two-mode internal resonance, which is triggered by geometric and material parameters of shells. Following a secular perturbation procedure, the underlying dynamic characteristics of the two-mode interactions in both exact and near resonance cases are fully discussed. It is revealed that the system will undergo a bifurcation in near resonance case, which induces the dynamic response at high energy level being distinct from the motion at low energy level. The effects of temperature and volume fractions of composition on the exact resonance condition and bifurcation characteristics of FG cylindrical shells are also investigated.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《固体力学学报:英文版》
  • 主管单位:
  • 主办单位:中国力学学会
  • 主编:郑泉水
  • 地址:武汉市珞喻路1037号华中科技大学南一楼西北508室
  • 邮编:430074
  • 邮箱:amss@mail.hust.edu.cn
  • 电话:027-87543737
  • 国际标准刊号:ISSN:0894-9166
  • 国内统一刊号:ISSN:42-1121/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:133