位置:成果数据库 > 期刊 > 期刊详情页
基于量子行为的微粒群优化算法的数据聚类
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60474030)
中文摘要:

在PSO聚类算法的基础上,提出了基于量子行为的微粒群优化算法(QPSO)的数据聚类。QPSO算法不仅参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛。PSO与QPSO算法的不同在于聚类中心的进化上,实验中用到四个数据集比较的结果,证明了QPSO优于PSO聚类方法。在聚类过程中使用了一种新的度量代替Euclidean标准,实验证明了新的度量方法比Euclidean标准更具有健壮性,聚类的结果更精确。

英文摘要:

A data clustering using quantum-behaved particle swarm optimization (QPSO) based on PSO clustering was proposed. Not only parameters of QPSO is few and randomicity of QPSO is strong, but also QPSO cover with all solution space and guarantees global convergence of algorithms. The difference between PSO and QPSO is the evolution of the cluster centroids. The performance of the clustering method on four data sets were compared. The experiment results show QPSO clustering superiority. A new metric was used to replace the Euclidean norm in clustering procedures. Experiment results show that this new metric is more robust and accuracy than common-used Euclidean norm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049