通过等离子体浸没离子注入,在纯钛及Ti6Al7Ni和Ti6Al4V合金表面进行不同剂量的氮离子注入处理。采用ZrO_2球与未处理和处理的钛及其合金平面摩擦副,以小牛血清溶液作为模拟生理介质,进行扭动微动磨损试验。研究氮离子注入处理后钛及其合金表面的特征以及注入剂量对材料扭动微动性能的影响。结果表明:氮离子注入浓度和角位移幅值显著影响钛及其合金的扭动微动运行和损伤行为。随着氮离子浓度增加,扭动微动运行边界向小角位移幅值滑移,中心轻微磨损区减少。钛及其合金的磨损机理为氧化磨损、磨粒磨损和剥层,磨粒磨损是离子注入层的主要磨损机理。
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.