位置:成果数据库 > 期刊 > 期刊详情页
Truncation and aliasing errors for Whittaker-Kotelnikov- Shannon sampling expansion
  • 期刊名称:Appl. Math. J. Chinese Univ
  • 时间:2013.1.21
  • 页码:412-418
  • 分类:O211.4[理学—概率论与数理统计;理学—数学] X831.01[环境科学与工程—环境工程]
  • 作者机构:[1]School of Mathematics and LPMC, Nankai University, Tianjin 300071, China, [2]Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China.
  • 相关基金:Supported by the National Natural Science Foundation of China (10971251, 11101220 and 11271199) and the Program for new century excellent talents in University of China (NCET-10-0513).
  • 相关项目:p-张量积和p-完全有界算子的讨论
作者: Ye,Peixin etc.|
中文摘要:

让 B p, 1 p < ,是从 L p 的所有围住的功能的空间() 它能被扩大到指数的类型的全部功能。没有腐烂假设,为截断的 Whittaker-Kotelnikov-Shannon 系列的一致错误界限在无穷为功能 f B p 基于本地采样被导出。然后 aliasing 错误和为从 Sobolev 类 U 的 non-bandlimited 函数的 Whittaker-Kotelnikov-Shannon 扩大的截断错误的最佳的界限(W p r ()) 被决定直到一个对数的因素。

英文摘要:

Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series based on local sampling are derived for functions f ∈ B^pΩ without decay assumption at infinity. Then the optimal bounds of the aliasing error and truncation error of Whittaker-Kotelnikov-Shannon expansion for non-bandlimited functions from Sobolev classes L/(Wp(R)) are determined up to a logarithmic factor.

同期刊论文项目
期刊论文 25 会议论文 4 著作 1
同项目期刊论文