让 B p, 1 p < ,是从 L p 的所有围住的功能的空间() 它能被扩大到指数的类型的全部功能。没有腐烂假设,为截断的 Whittaker-Kotelnikov-Shannon 系列的一致错误界限在无穷为功能 f B p 基于本地采样被导出。然后 aliasing 错误和为从 Sobolev 类 U 的 non-bandlimited 函数的 Whittaker-Kotelnikov-Shannon 扩大的截断错误的最佳的界限(W p r ()) 被决定直到一个对数的因素。
Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series based on local sampling are derived for functions f ∈ B^pΩ without decay assumption at infinity. Then the optimal bounds of the aliasing error and truncation error of Whittaker-Kotelnikov-Shannon expansion for non-bandlimited functions from Sobolev classes L/(Wp(R)) are determined up to a logarithmic factor.