A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has been performed. The study affirms that the finite size effect does not appear in the OPs of polar nano-semiconductors, while it exists in all other types of phonons. The absence of the FSE is confirmed to originate from the long-range Fr¨ohlich interaction and the breaking of translation symmetry. The result indicates that the Raman spectra of OPs cannot be used as a method to characterize the scale and crystalline property of polar nano-semiconductors.
A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has been performed. The study affirms that the finite size effect does not appear in the OPs of polar nano-semiconductors, while it exists in all other types of phonons. The absence of the FSE is confirmed to originate from the long-range FrShlieh interaction and the breaking of translation symmetry. The result indicates that the Raman spectra of OPs cannot be used as a method to characterize the scale and crystalline property of polar nano-semiconductors.