位置:成果数据库 > 期刊 > 期刊详情页
基于拓扑与形态特征的城市道路交通状态空间自相关分析
  • ISSN号:1560-8999
  • 期刊名称:《地球信息科学学报》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101
  • 相关基金:国家自然科学基金项目(41271408);国家“863”计划项目(2012AA12A211);中国博士后科学基金(2013M541024).
中文摘要:

城市道路交通状态具有空间自相关特征。某一道路交通状态的变化会对其周边道路产生影响,故把握道路交通状态的空间自相关性是提高交通规划、交通预测水平的基础。然而,城市道路交通状态又具有空间异质性,即道路交通状态的影响扩散并非各向同性,其使得道路交通状态空间自相关性的度量更为复杂,因此仅从地理空间下道路之间的邻近关系出发进行分析有失偏颇。同时,城市道路具有拓扑结构特征和几何形态特征,二者对于交通状态自相关性的影响和制约,却未引起足够重视。本文从城市道路的拓扑结构特征和几何形态特征出发,提出了一种新的交通状态空间自相关路段识别规则,即基于交通状态变化的路段空间识别规则,通过拓扑社区发现方法刻画路段在空间上的聚集特征,同时,基于Stroke跟踪的几何形态概化来描述道路交通状态变化影响的空间异质性。结果表明,利用本文提出的识别规则产生的交通状态自相关路段集合,较仪考虑地理空间邻近或拓扑结构的识别规则更为合理,更好地揭示了城市道路交通状态的空间白相关特征。

英文摘要:

Urban road traffic is spatially autocorrelated. The change of the traffic on a certain road will alter the surrounding roads' traffic status. Understanding the spatial autocorrelation of road traffic is essential for traffic planning and traffic prediction. However, unban road traffic is heterogeneous in spatial, which means that the traffic interactions between neighboring roads are not always isotropy. The spatial heterogeneity of urban traffic makes the measurement of spatial autocorrelation more complex, thus only uses spatial adjacency to define the traffic autocorrelated roads cannot well reveal the characteristics of spatial autocorrelation in urban road traffic. It is worth mentioning that urban roads have topological and geometric properties, which are neglected in the pre- vious research. The aim of our research is to analyze the spatial autocorrelation of urban road traffic based on the topological and geometric properties of urban roads. We first investigated the spatial clustering characteristics of urban roads using community detection algorithm, and then depicted the spatial heterogeneity of the traffic inter- action by measuring the importance of road segments with the use of the roads' generalized geometric forms. Based on those analyses, we proposed a novel approach to cluster together the roads whose traffic is spatially au- tocorrelated. Experiment results for the road network of Beijing indicate that the proposed approach performs better than the approaches that only consider the spatial adjacency or topological structure, which further implies that our approach can capture the spatial autocorrelation characteristics of urban road traffic more reasonably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球信息科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院地理科学与资源研究所 中国地理学会
  • 主编:徐冠华
  • 地址:北京大屯路甲11号
  • 邮编:100101
  • 邮箱:sxfu@lreis.ac.cn
  • 电话:010-64888891
  • 国际标准刊号:ISSN:1560-8999
  • 国内统一刊号:ISSN:11-5809/P
  • 邮发代号:82-919
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3181