位置:成果数据库 > 期刊 > 期刊详情页
融合目标特征和空间信息的粒子滤波跟踪
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学计算机科学与技术系,江苏苏州215006
  • 相关基金:国家自然科学基金(No.60873116); 江苏省高校自然科学基金(No.07KJD520186); 苏州大学预研项目 苏州大学计算机学院预研项目~~
中文摘要:

传统的基于颜色直方图的粒子滤波跟踪算法不能很好地利用跟踪对象的空间结构信息,因此在邻域颜色相似或目标模型微小变化时,不能取得良好的跟踪效果。提出一种融合目标特征和目标空间位置信息的粒子滤波跟踪算法,该算法鉴于目标空间位置包含跟踪对象一定的结构信息,可以和目标特征互为补充,利用定义的融合目标特征和目标空间位置的度量函数来进行跟踪对象相似度度量,以提高跟踪算法的稳健性和精确性。同时针对粒子滤波计算粒子相似度时可并行的特点,运用OpenMP共享存储并行计算进行粒子滤波跟踪的加速。实验表明,基于融合目标特征和空间信息的粒子滤波跟踪算法能得到更鲁棒的跟踪效果,可以有效地提高目标跟踪的速度。

英文摘要:

In the traditional particle filter tracking,color histogram is usually used as the features vectors,there are some limits because of the loss of space distribution.To overcome this problem,an efficient tracking algorithm based on object feature and spatial information fusion within particle filter framework is proposed.The dissimilarity between the referenced target and the target candidate is expressed by not only color,but also space distribution.At the same time for particle filter can be characterized by parallelism,OpenMP shared memory parallel computing is used for the acceleration of particle filter tracking.Experiments show that the algorithm can improve accuracy and speed for particle filter object tracking in the objectives and background of complex applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887