位置:成果数据库 > 期刊 > 期刊详情页
Experimental study on heavy ion single-event effects in flash-based FPGAs
  • ISSN号:1007-4627
  • 期刊名称:《原子核物理评论》
  • 时间:0
  • 分类:TN791[电子电信—电路与系统] TP317.4[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Institute of Modem Physics, Chinese Academy of Sciences,Lanzhou 730000, China, [2]University of Chinese Academy of Sciences, Beijing 100049,China
  • 相关基金:This work was supported by the National Nat- ural Science Foundation of China (Nos. 11079045, 11179003 and 11305233). The SEE test in this paper was conducted at Heavy Ion Research Facility in Lanzhou (HIRFL) located at Institute of Modem Physics, Chinese Academy of Sciences. The authors are grateful for the support of the HIRFL team.
中文摘要:

With extensive use of flash-based field-programmable gate arrays(FPGAs) in military and aerospace applications, single-event effects(SEEs) of FPGAs induced by radiations have been a major concern. In this paper, we present SEE experimental study of a flash-based FPGA from Microsemi Pro ASIC3 product family. The relation between the cross section and different linear energy transfer(LET) values for the logic tiles and embedded RAM blocks is obtained. The results show that the sequential logic cross section depends not too much on operating frequency of the device. And the relationship between 0 →1 upsets(zeros) and 1 →0 upsets(ones) is different for different kinds of D-flip-flops. The devices are not sensitive to SEL up to a LET of 99.0 Me V cm2/mg.Post-beam tests show that the programming module is damaged due to the high-LET ions.

英文摘要:

With extensive use of flash-based field-pro- grammable gate arrays (FPGAs) in military and aerospace applications, single-event effects (SEEs) of FPGAs induced by radiations have been a major concern. In this paper, we present SEE experimental study of a flash-based FPGA from Microsemi ProASIC3 product family. The relation between the cross section and different linear energy transfer (LET) values for the logic tiles and embedded RAM blocks is obtained. The results show that the sequential logic cross section depends not too much on operating frequency of the device. And the relationship between 0 → 1 upsets (zeros) and 1 → 0 upsets (ones) is different for different kinds of D-flip-flops. The devices are not sensitive to SEL up to a LET of 99.0 MeV cm2/mg. Post-beam tests show that the programming module is damaged due to the high-LET ions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《原子核物理评论》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院近代物理研究所 中国核物理学会
  • 主编:肖国青
  • 地址:兰州市31号信箱
  • 邮编:730000
  • 邮箱:npr@impcas.ac.cn
  • 电话:0931-4969371/4
  • 国际标准刊号:ISSN:1007-4627
  • 国内统一刊号:ISSN:62-1131/O4
  • 邮发代号:54-183
  • 获奖情况:
  • 2009年1月获甘肃省优秀期刊奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:1602