位置:成果数据库 > 期刊 > 期刊详情页
综合非光谱信息的荒漠化土地CART分类
  • ISSN号:1007-4619
  • 期刊名称:《遥感学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]鲁东大学地理与资源管理学院,山东烟台264025, [2]枣庄学院,山东枣庄277160
  • 相关基金:国家自然科学基金(编号:40301025),鲁东大学校基金(编号:202-19070301).
中文摘要:

用遥感手段对荒漠化进行监测是当前荒漠化研究的热点问题,传统的荒漠化遥感信息自动提取方法是基于光谱特征的图像分割,受多种因素的影响,分类精度的提高遇到瓶颈,因此基于知识的分类方法应运而生。CART是一种非参数化的分类与回归方法,在用于遥感影像自动分类时,可以方便地应用多源知识,提高分类精度。本文在分析了CART方法原理的基础上,针对荒漠化地区各种地物的特点,将包括地物光谱知识、纹理知识、植被盖度等在内的多种知识融入CART模型,克服了单纯利用光谱特征进行分类的不足,取得了85.94%的精度。

英文摘要:

Remote sensing plays an important role in desertification monitoring. The traditional remote information of desertification automatic extraction method is image segmentation based on sensing spectral characteristics. Influenced by various factors, the improvement of class precision encounters barrier, and the knowledge-based classifying method comes into being. CART is a kind of non-parameter classification and regression method, which uses multi-source data to improve classification accuracy when used in automatic classification based on remote sensing images. After analyzing the principle of CART method, we put spectral knowledge, texture knowledge, and vegetation coverage together into CART model, the deficiency of simply using spectral characteristics is overcome, and an accuracy of 85.94% is obtained.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遥感学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地理学会环境遥感分会 中国科学院遥感应用研究所
  • 主编:顾行发
  • 地址:北京市安外大屯路中国科学院遥感与地球研究所
  • 邮编:100101
  • 邮箱:jrs@irsa.ac.cn
  • 电话:010-64806643
  • 国际标准刊号:ISSN:1007-4619
  • 国内统一刊号:ISSN:11-3841/TP
  • 邮发代号:82-324
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16827