设G为一简单连通图,则G的零阶广义Randic指数定义为R0α(G)=∑v∈V(G)dα(v),其中d(v)为顶点v的度数,α为非0和1的实数;图G称之为仙人掌图,如果G的每一块要么是一条边,要么是一个圈.此文主要研究有r(≥3)个圈仙人掌图的零阶广义Randic指数的界.
The zero-order general Randic index of a simple connected graph G is defined as R0α(G) = v∈V(∑G) dα(v),where d(v) denotes the degree of v,α is a given real number other than 0 and 1.A graph G is called a cactus if each block of G is either an edge or a cycle.In this paper,we present the sharp bounds of the zero-order general Randic index of cacti with r(≥3) cycles.