胆汁酸只在肝脏中合成,并通过直接作用或间接作用抑杀肠道微生物。而肠道微生物又可以促进初级胆汁酸转化为次级胆汁酸,从而改变机体内胆汁酸的组成。初级胆汁酸和次级胆汁酸均可调控法尼酯X核受体(FXR)的表达,已有研究发现,FXR在胆汁酸的合成与代谢、葡萄糖代谢、脂质代谢和肝脏自噬中发挥着重要作用。此外,胆汁酸在肠道微生物的互作中起到了重要作用。本文主要综述了胆汁酸与肠道微生物之间的互作及其在宿主代谢调控中的作用,首次探讨了胆汁酸与肠道微生物的互作可能调节自噬相关信号通路。
Bile acid(BA) is de novo synthesized exclusively in the liver and has direct or indirect antimicrobial effects. On the other hand, the composition and size of the BA pool can be altered by intestinal microbiota via the biotransformation of primary BAs to secondary BAs, and subsequently regulate the nuclear farnesoid X receptor(FXR; NR1H4). The BA-activated FXR plays important roles in BA synthesis and metabolism, glucose and lipid metabolism, and even hepatic autophagy. BAs can also play a role in the interplays among intestinal microbes. In this review, we mainly discuss the interactions between BAs and intestinal microbiota and their roles in regulating host metabolism, and probably the autophagic signaling pathway.