当N≥4时,CapozziA(1985),AmbrosettiA(1986)给出了具临界指数2^*的椭圆型方程-△Ku+|u|^2*-2u,inΩ∈R^N;u=O,on ЭΩ非平凡解的存在性结论,其中λk是算子-△的第k个特征值。然而N=3是问题(*)的临界维数,在适当添加一个次临界扰动项后。利用P.L.Lions集中紧性原理获得了一对非平凡解的存在性结论。
It is well known that Capozzi A( 1985 ) and Ambrosetti A(1986) have got existence theorems of the fol- lowing elliptic equation with critical Sobolev exponent if N ≥ 4,△Ku+|u|^2*-2u,inΩ∈R^N;u=O,on ЭΩ where λk is the kth eigen - value of - △. However,N = 3 is the critical dimension of the problem( * ). Adding a subcritical perturbation,the authors have given existence theorems by ways of the concentration - compactness principle of P. L. Lions.