图 G 的标记的 f 是从它的边集合 E (G)的 bijection 到集合{ 1 , 2 ,,| E (G)|},它是 antimagic 如果为任何不同顶点 x 和 y ,标签的和紧张不安到 x 的事件与标签的和不同紧张不安事件到 y 。如果 G 有是 antimagic 的 f,图 G 是 antimagic。在 1990 推测的 Hartsfield 和 Ringel 那除 K 以外的每张连接的图 < 潜水艇 class= “ a-plus-plus ” > 2 是 antimagic。在这份报纸,我们证明有甚至因素的一些图是 antimagic,它概括一些已知的结果。
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2,……, E(G) }, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than 2K is antimagic. In this paper, we show that some graphs with even factors are antimagic, which generalizes some known results.