位置:成果数据库 > 期刊 > 期刊详情页
基于兴趣点多特征融合的物体识别方法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]移通学院计算机科学系, [2]计算机科学与技术学院,重庆邮电大学400065
  • 相关基金:国家自然科学基金(60842003)资助
中文摘要:

针对光照变化人脸识别中大多数现有的人脸识别算法只能单独实施降维,或者字典学习而不能完全利用训练样本判别信息的问题,提出了基于判别性降维的字典学习算法。首先,利用经典的特征提取算法PCA初始化降维投影矩阵;然后,计算字典和系数,通过联合降维与字典学习使得投影矩阵和字典更好地相互拟合;最后,利用迭代算法输出字典和投影矩阵,并利用经I2-范数正则化的分类器完成人脸的识别。在PIE及扩展的YaleB两大人脸数据库上得到了验证了所提算法的有效性及可靠性。实验结果表明,相比几种较为先进的线性表示算法,所提算法在处理光照变化人脸识别时取得了更高的识别率。

英文摘要:

AbstractMost existing face recognition algorithms can not use discriminative information of samples due to they only carry out dimensionality reduction or dictionary learning, for which dictionary learning algorithm based on discriminative dimensionality reduction is proposed. Firstly, typical feature extraction algorithm PCA is used to initialize dimensionality reduction projection matrix. Then, dictionary and coefficient is computed and the dictionary can match with each other by jointing dimension reduction and dictionary learning. Finally, dictionary and projection matrix is outputted by using iterative algorithm, and classifier regularized by 12-norm is used to finish face recognition. The effectiveness and reliability of proposed algorithm has been verified by experiments on PIE and extended YaleB face databases. Experimental results show that proposed algorithm has higher recognition accu- racy than several other advanced linear represent algorithms in dealing with face recognition with illustration varia- tion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139