位置:成果数据库 > 期刊 > 期刊详情页
改进SVM算法的电商行业竞争对手识别
  • ISSN号:1672-6871
  • 期刊名称:《河南科技大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉理工大学理学院,湖北武汉430070, [2]武汉大学计算机学院,湖北武汉430070
  • 相关基金:国家“863”高技术研究发展计划基金项目(20121g0139);国家自然科学基金项目(61272109)
中文摘要:

针对电商行业竞争对手识别准确率偏低的问题,提出了一种改进的支持向量机(SVM)算法来优化识别过程。该算法基于Mercer定理融合间隔因素逐步修正核函数,以提高分类器的泛化能力。以ebay平台接口抽取的Lising数据为研究对象,在满足Mercer定理的前提下对核函数进行保形变换;然后,结合核函数的黎曼几何分析,融合间隔因素改进核函数以构成新的分类器;最后,利用参数寻优算法确定实例中的参数模型并进行测试。与余弦向量相似度算法及SVM算法的实验结果相比,本文提出的方法识别竞争对手的准确度分别提高了10.2%和3.8%。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河南科技大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河南省教育厅
  • 主办单位:河南科技大学
  • 主编:苏娟华
  • 地址:河南省洛阳市开元大道263号
  • 邮编:471023
  • 邮箱:hkdxbz@haust.edu.cn
  • 电话:0379-64231476
  • 国际标准刊号:ISSN:1672-6871
  • 国内统一刊号:ISSN:41-1362/N
  • 邮发代号:36-285
  • 获奖情况:
  • 1999年全国优秀高校自然科学学报及教育部优秀科技...,全国高校自然科学优秀学报,河南省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4775