利用基本解矩阵法数值求解一类带有奇异点的复本征方程组,并对奇异点的消除和复本征值的确定及数值不稳定性等问题进行了讨论,编制了求解程序代码,并应用于离子温度梯度(ITG模或η1模)驱动不稳定性研究的数值模拟.实例计算表明,数值结果与理论分析完全吻合.
A numerical method and a code for seeking complex eigenvalues are given with the fundamental matrix method. The treatment of singularity, complex eigenvalue and numerical instability are discussed. The method is used to simulate the instability driven by a temperature gradient [ ηi ]. Numerical results agree well with theoretical analyses.