讨论变系数一阶双曲组的时空双m次间断有限元解.基于单元上的Radau-型展开,在矩形网格上证明了有限元的最佳收敛性.数值例子还证实了在m+1-阶Radau点上的超收敛性.
The time-space bi-m degree discontinuous finite element to solve first order hyperbolic system with variable coefficients is discussed. Based on Radau-type expansion in each element, the optimal order convergence on rectangular mesh is proved. Superconvergence at m + 1-order Radau points is shown by numerical experiments.