位置:成果数据库 > 期刊 > 期刊详情页
交通数据中的会话识别
  • ISSN号:1003-0077
  • 期刊名称:中文信息学报
  • 时间:2016
  • 页码:162-169
  • 期号:01
  • 便笺:11-2325/N
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] TM621.9[电气工程—电力系统及自动化]
  • 作者地址:山东大学计算机科学与技术学院;
  • 作者机构:[1]School of Computer Science and Technology, Shandong University, Jinan 250101, China, [2]School of Information Technology, York University, Toronto, M3J1P3, Canada
  • 相关基金:This work was supported in part by the National Basic Research 973 Program of China under Grant No. 2015CB352502, the National Natural Science Foundation of China under Grant Nos. 61272092 and 61572289, the Natural Science Foundation of Shandong Province of China under Grant Nos. ZR2012FZ004 and ZR2015FM002, the Science and Technology Development Program of Shandong Province of China under Grant No. 2014GGE27178, and the NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Grants.
中文摘要:

下地点预言为许多基于地点的应用程序是很重要的。与稳固的理论基础的优点,基于 Markov 的途径沿着这个方向获得了成功。在这份报纸,我们寻求由理解目标的类似提高预言表演。特别地,我们建议一个新奇方法,叫的加权的 Markov 模型(加权 -- 公里) ,它两个都利用在采矿的公平通行证的地点和目标类似的顺序活动性模式。到这个目的,我们首先与它的自己的轨道记录为每个目标训练一个 Markov 模型,然后确定从二个方面的不同目标的类似:空间地区类似和轨道类似。最后,我们由把类似看作到达下次可能的各个的概率的重量把目标类似合并到 Markov 模型地点,和回来是的 top-rankings 结果。我们在真实数据集上进行了广泛的实验,并且结果在存在解决方案上在预言精确性表明重要改进。

英文摘要:

Next location prediction is of great importance for many location-based applications. With the virtue of solid theoretical foundations, Markov-based approaches have gained success along this direction. In this paper, we seek to enhance the prediction performance by understanding the similarity between objects. In particular, we propose a novel method, called weighted Markov model (weighted-MM), which exploits both the sequence of just-passed locations and the object similarity in mining the mobility patterns. To this end, we first train a Markov model for each object with its own trajectory records, and then quantify the similarities between different objects from two aspects: spatial locality similarity and trajectory similarity. Finally, we incorporate the object similarity into the Markov model by considering the similarity as the weight of the probability of reaching each possible next location, and return the top-rankings as results. We have conducted extensive experiments on a real dataset, and the results demonstrate significant improvements in prediction accuracy over existing solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136