位置:成果数据库 > 期刊 > 期刊详情页
基于GA-ANN的非线性半参数建模方法
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]浙江大学工业控制技术国家重点实验室,浙江杭州310027
  • 相关基金:国家“863”高技术研究发展计划资助项目(2007AA04Z168 2009AA04Z154); 国家自然科学基金资助项目(60574047); 教育部博士点基金资助项目(20050335018)
中文摘要:

为结合参数模型与非参数模型各自的优势,提高建模精度,将非线性半参数模型引入到工业过程建模中.提出基于遗传算法和神经网络的非线性半参数模型的建模方法及结构方案,并给出同时估计参数模型部分和非参数模型部分的交叉循环迭代的算法步骤.对算法中的神经网络的设计和遗传算法进行了改进研究,重点讨论了在增加精英保留策略、增加算法的记忆功能、提出新的适应度计算方法和交叉变异策略等方面的改进措施.采用聚乙烯装置的现场工业数据对方法的有效性进行了验证.结果表明:半参数模型比传统的参数模型有更好的预测精度,并能够较好地跟踪过程变化.

英文摘要:

Nonlinear se-mi-parametric models are introduced for industrial process modeling to improve the modeling accuracy by taking the advantages of both parameter and non-parameter models.The modeling methodology and structure of nonlinear semi-parametric modeling are proposed based on the genetic algorithm and the neural network,and the cross-loop iterative algorithm procedures are also introduced for estimating the parameters of both the parametric and non-parametric parts.Then,the design of neural network and the genetic algorithm are investigated,which increase the elite preserving strategy,enhance the memory function,propose an innovative fitness calculation method,and improve the crossover and mutation strategy.The on-site industrial data of polyethylene plant is used to demonstrate the effective of this method.The result shows that the proposed approach is more accurate in prediction than the conventional parametric models and can better track the variation of the process.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198