位置:成果数据库 > 期刊 > 期刊详情页
Carbon fixation and influencing factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China
  • ISSN号:1009-2242
  • 期刊名称:《水土保持学报》
  • 时间:0
  • 分类:P931.3[天文地球—自然地理学] X171.4[环境科学与工程—环境科学]
  • 作者机构:[1]Shapotou Desert Research and Experimental Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China, [2]Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou 730000, China
  • 相关基金:Acknowledgements This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-EW-301-3), the National Program on Key Basic Research Project (2013CB429905) and the National Natural Scientific Foundation of China (41201084; 31170385). Thanks to two anony- mous reviewers for their suggestions and helpful comments.
中文摘要:

Biological soil crusts(BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effective active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2?d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2?a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2?a)(30.2% of the total) and 8.8 g C/(m2?a)(43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same.

英文摘要:

Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effec- tive active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2.d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2.a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2.a) (30.2% of the total) and 8.8 g C/(m2.a) (43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水土保持学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院水利部水土保持研究所 中国土壤学会
  • 主编:刘宝元
  • 地址:陕西杨陵区西农路26号
  • 邮编:712100
  • 邮箱:journal@ms.iswc.ac.cn
  • 电话:029-87012707
  • 国际标准刊号:ISSN:1009-2242
  • 国内统一刊号:ISSN:61-1362/TV
  • 邮发代号:52-150
  • 获奖情况:
  • 1999年陕西省十佳期刊和优秀科技期刊一等奖,2000年中科院优秀期刊三等奖,2000年入选为中文核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:39646