位置:成果数据库 > 期刊 > 期刊详情页
改进GA优化BP神经网络的短时交通流预测
  • ISSN号:1003-5060
  • 期刊名称:《合肥工业大学学报:自然科学版》
  • 时间:0
  • 分类:TP278[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]过程优化与智能决策教育部重点实验室,合肥230009
  • 相关基金:国家自然科学基金重点基金(No.71231004);国家自然科学基金(No.71171071).
中文摘要:

针对柔性作业车间调度问题的特点,提出了一种基于改进生物地理学优化算法的求解方案。该方案采用基于工序和基于机器相结合的编码机制,在初始种群中引入启发式算法生成的优良个体,并在标准生物地理学算法基础上对迁移和变异操作进行了改进,采用符合该调度问题的迁移率模型和自适应变异机制,克服了传统算法易于早熟或收敛慢的缺点。通过仿真验证了该算法的可行性和有效性。

英文摘要:

According to the characteristics of the flexible job shop scheduling problem, an improved biogeography-based optimization algorithm is proposed in this paper. The program uses a combination of the machine-based and order-based coding mechanism, at the same time superior individuals are generated based on heuristic rules in the initial population.Migration and mutation mechanism is improved based on standard biogeography-based optimization algorithm, in line with the scheduling problem of mobility model and adaptive mutation mechanism, for overcoming the shortcoming of early mature and slow convergence of traditional algorithms. Through simulation and comparison experiments, the results demonstrate the feasibility and effectiveness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《合肥工业大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:合肥工业大学
  • 主编:何晓雄
  • 地址:合肥市屯溪路193号
  • 邮编:230009
  • 邮箱:XBZK@hfut.edu.cn
  • 电话:0551-2905639
  • 国际标准刊号:ISSN:1003-5060
  • 国内统一刊号:ISSN:34-1083/N
  • 邮发代号:26-61
  • 获奖情况:
  • 1999中国优秀高校自然科学学报,1997华东地区优秀期刊,1998安徽省优秀科技期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19655