Erdoes等于1987年曾证明了:对于正整数a,b,如果对所有素数p,a,b被p除所得余数分别为a(mod p),b(mod p),都有a(mod p)≤b(mod p),则a=b.本文研究对哪些正整数a,b,满足对所有素数P,恒有a(mod p)≤b(mod p)+2,并对1≤a≤7,确定了所有的b。
In 1987,Erdoes et al. proved that if a,b are positive integers such that a(mod p)≤ b(mod p) for all primes p,where a(mod p), b(mod p) denote the remainders of a and b divided hy p, then a=b. In this paper,for 1≤a≤7,all positive integers b such that a(mod p)≤b(mod p)+2 for all primes p are determined.