位置:成果数据库 > 期刊 > 期刊详情页
单尺度词袋模型图像分类方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西南大学计算机与信息科学学院,重庆400715, [2]重庆大学光电技术及系统教育部重点实验室,重庆400044
  • 相关基金:国家自然科学基金资助项目(61003203); 重庆市自然科学基金资助项目(CSTC2010BB2230)
中文摘要:

针对基于SIFT特征描述的图像分类方法需构造多尺度极值空间,运算耗时且部分极值点无直观视觉意义,提出一种新型的图像分类方法。该方法通过网格直接提取单尺度SIFT特征,并对局部特征进行单尺度词袋模型描述。由于单尺度SIFT无须构造多尺度空间且保留了更多的全局信息,从而极大地降低了计算复杂度且使分类正确率得到显著提升。实验结果表明,提出的单尺度SIFT比常规SIFT所形成的词袋模型在分类正确率上有明显提高。

英文摘要:

The general image classification methods relying on SIFT feature description need to construct multi-scale space,thus it is not only time-consuming but also irrelevant to visual sense.This paper proposed a new image classification method.It directly extracted single-scale SIFT features based grid,and described the features employing Bag-of-Words(BOW) model afterwards.Because single-scale SIFT need not build multi-scale space and retains more global information,the proposed method could reduce the computational complexity substantially and improved the classification accuracy significantly.Experimental results illustrate that compared with the standard SIFT based BOW model,the classification accuracy of BOW model formed from single-scale SIFT is significantly improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049