研究一个高斯小波函数产生的混沌分岔现象,随着小波函数中指数参数的增加,它的分岔图出现了倍周期分岔,然后出现混沌,经过一段混沌区域后又出现2的幂周期。在整个过程中,正分岔与逆分岔完整地结合在一起,改变小波函数的系数出现一些明显的奇数周期,如3周期、5周期等。绘制Lyapunov指数曲线及映射折射过程,对混沌现象进行研究,将小波函数展开成近似的多项式函数,对近似多项式函数的分岔图进行了分析。
The bifurcation diagram of a wavelet function is discussed in the paper. The chaotic property of the map is changed with the variations of the constant k. Its μ-γ diagram shows specially that there are bifurcations not only from period-2n to chaotic state but also from the chaotic state to.period-2n when the parameter ~t increases. The Lyapunov exponent diagram of the maps and one of the graphical iteration plot for the map are drawn. The wavelet function is also expanded with polynomial approximation in order to analyze the chaotic process.