位置:成果数据库 > 期刊 > 期刊详情页
双轮驱动移动机器人的学习控制器设计方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP242.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]国防科学技术大学机电工程与自动化学院自动化所,长沙410073
  • 相关基金:基金项目:国家自然科学基金项目(60774076)
中文摘要:

提出一种基于增强学习的双轮驱动移动机器人路径跟随控制方法,通过将机器人运动控制器的优化设计问题建模为Markov决策过程,采用基于核的最小二乘策略迭代算法(KLSPI)实现控制器参数的自学习优化。与传统表格型和基于神经网络的增强学习方法不同,KLSPI算法在策略评价中应用核方法进行特征选择和值函数逼近,从而提高了泛化性能和学习效率。仿真结果表明,该方法通过较少次数的迭代就可以获得优化的路径跟随控制策略,有利于在实际应用中的推广。

英文摘要:

This paper proposed a novel self-learning path-following control method based on reinforcement learning for a class of two-wheeled mobile robots. The path-following control problem of autonomous vehicles was modelled as a Markov decision process (MDP) and by using the kernel least-squares policy iteration (KLSPI) algorithm, the lateral control performance of the two-wheeled mobile robot could be optimized in a self-learning style. Unlike traditional table-based reinforcement learning (RL) and RL based on neural networks, KLSPI used kernel methods with automatic feature selection and value function approximation in policy evaluation so that better generalization performance and learning efficiency could be obtained. Simulation results show that the proposed method can obtain an optimized path-following control policy only in a few iterations, which will be very practical for real applications.

同期刊论文项目
期刊论文 16 会议论文 12 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049