定义了四元双曲空间上的链和R-圆,并给出了链在垂直投影下的性质.证明了经过Heisenberg群上固定两点的链的唯一性,R-球的qc-水平性,并给出了R-圆与纯虚R-圆之间的关系.
This paper defines chain and R-circle on quaternionic hyperbolic space, and gives the property of chains under the vertical projection. The uniqueness of chain passing through two distinct points and qc-horizontality of R-circles are proved, and the relationship between R-circle and pure imaginary R-circle is given.