研究一类具有合作机制的群决策问题。提出两阂值的合作函数对决策人之间的合作关系进行模糊分类,采用模糊测度方法度量决策人和决策人集的权力指数,建立合作群决策的非线性规划熵模型集结权力指数,并基于极大熵的最优化原理求解该模型。利用Choquet模糊积分计算备选方案的综合评价值,并对备选方案排序选择最优方案。最后通过算例分析并验证合作群决策模型和运用模糊积分方法求解模型的合理性、有效性。
Group decision making problem is considered for a class of bounded cooperation mechanism in this paper. Cooperation relation between any two decision makers is vaguely classified by cooperation function with two thresholds. Power index of decision makers is measured by fuzzy measure. Nonlinear programming entropy model of cooperation group decision making is constructed to aggregate power index of decision maker set and solved hy maximum entropy principle. Integrated evaluation values of optional schemes are calculated by the way of Choquet fuzzy integral. All optional schemes are ordered and optimal scheme is chosen. At last, one numerical example is analyzed to verify the validity and rationality of cooperation group decision making model and application of the fuzzy integral method.