位置:成果数据库 > 期刊 > 期刊详情页
Chinese word segmentation with local and global context representation learning
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP391.12[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] X24[环境科学与工程—环境科学]
  • 作者机构:[1]School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, [2]Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • 相关基金:Supported by the National Natural Science Foundation of China (No. 61303179, Ul135005, 61175020).
中文摘要:

A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper.First,the proposed Chinese character learning model uses the semantics of local context and global context to learn the representation of Chinese characters.Then,Chinese word segmentation model is built by a neural network,while the segmentation model is trained with the character representations as its input features.Finally,experimental results show that Chinese character representations can effectively learn the semantic information.Characters with similar semantics cluster together in the visualize space.Moreover,the proposed Chinese word segmentation model also achieves a pretty good improvement on precision,recall and f-measure.

英文摘要:

A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chinese character learning model uses the semanties of loeal context and global context to learn the representation of Chinese characters. Then, Chinese word segmentation model is built by a neural network, while the segmentation model is trained with the eharaeter representations as its input features. Finally, experimental results show that Chinese charaeter representations can effectively learn the semantic information. Characters with similar semantics cluster together in the visualize space. Moreover, the proposed Chinese word segmentation model also achieves a pretty good improvement on precision, recall and f-measure.

同期刊论文项目
期刊论文 17 会议论文 23
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550