位置:成果数据库 > 期刊 > 期刊详情页
结合边缘纹理和抽样推断的自适应阴影检测算法
  • ISSN号:0253-987X
  • 期刊名称:《西安交通大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]第二炮兵工程大学502教研室,西安710025
  • 相关基金:国家自然科学基金资助项目(61132008)
中文摘要:

为改进阴影检测的准确度和场景自适应能力,提高运动目标检测精度,设计了一种自适应的阴影检测算法。该算法利用候选前景与原始背景的Y、U、V分量变化比率来检测阴影像素,并结合全局边缘纹理特征及抽样推断方法来估计检测阈值。算法能自动完成阈值估计及阴影判别过程而无需人工干预,并可自动适应各种光线条件,具有较强的鲁棒性。对不同光线环境的标准视频检测实验表明,该算法在精度和实时性上均有所提升,阴影检测综合性能指标达到了94%以上。

英文摘要:

An adaptive shadow detection algorithm is proposed to improve the accuracy and scene adaptive capacity of the shadow detection and to raise the effect of moving object detection.The change ratios of YUV components between candidate foreground and original background are used to detect shadow pixels,and the global edge texture and sampling deduction methods are employed to estimate the detection threshold values.The algorithm automatically complete the processes of both thresholds estimation and shadow discriminant without any manual intervention,so the algorithm is adaptive to different light conditions and has a strong robustness.Experiment results on standard videos with different lighting conditions show that both the accuracy and stability are raised by the proposed algorithm and the average comprehensive index of the proposed algorithm can reach more than 94%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275