变异量子粒子群算法(MQPSO)通过在量子粒子群算法(QPSO)中引入变异机制,增加了全局搜索能力,避免陷入局部最优。在粗糙集理论和MQPSO算法基础上,提出了基于MQPSO优化的决策表属性约简方法,并在算法实现中提出了迭代记录策略,改进了算法中的耗时计算部分,降低了算法的时间复杂度。
A quantum particle swarm optimization algorithm with mutation operator(MQPSO) can improve the global search capability to avoid local optimum by introducing the mutation mechanism into the quantum particle swarm optimization(QPSO).In this paper,an attribute reduction method based on MQPSO optimization is proposed,and a strategy of iterative record is given to modify the time-consuming part of the algorithm such that the time complexity can be reduced.