位置:成果数据库 > 期刊 > 期刊详情页
On-line prediction of a fixed-bed reactor using K-L expansion and neural networks
  • 期刊名称:Chinese J.of Chem
  • 时间:0
  • 页码:1998,6,299-305
  • 语言:英文
  • 分类:TQ018[化学工程]
  • 作者机构:[1]Department of Chemical Engineering, [2]University of Virginia, [3]Charlottesville, [4]VA 22903, [5]USA
  • 相关基金:Supported by the National Natural Science Foundation of China(No.29676014)and others.
  • 相关项目:非线性高维化工系统的Es在线识别及在线优化
作者: 周兴贵|
中文摘要:

An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is chosen as a working system and a pseudo-homogeneous twodimensional model is used to generate simulation data to investigate the prediction scheme presentedunder randomly changing operating conditions.The scheme consisting of the K-L expansion andneural network performs satisfactorily for on-line prediction of reaction yield and bed temperatures.

同期刊论文项目
同项目期刊论文