瑞利波勘探主要是建立在弹性介质分层半空间模型基础上的。当实际地层中包含孔隙介质层时,需要将孔隙介质简化为弹性介质来进行分析和处理。这种简化处理究竟对瑞利波勘探造成怎样的影响是本文所研究的问题。本文基于弹性介质与孔隙介质共同构成的分层半空间模型,首先推导了分层半空间中两种介质处于不同相对位置时的瑞利波频散方程,解决了不同阶数矩阵之间的变量传递问题然后,针对传递矩阵法在求解频散函数时可能出现的溢出问题,给出了一种可以有效提高计算范围的解决方案;同时,提出了一套新的数值算法用于复频散方程的快速求解。数值计算结果表明:当孔隙介质位于半空间表面时对低频瑞利波频散特性的影响最为显著,而在其它情况下对瑞利波频散特性的影响相对较小。
Rayleigh wave exploration is based on an elastic layered half-space model. If practical formations contain porous layers, these layers need to be simplified as an elastic medium. We studied the effects of this simplification on the results of Rayleigh wave exploration. Using a half-space model with coexisting porous and elastic layers, we derived the dispersion functions of Rayleigh waves in a porous layered half-space system with porous layers at different depths, and the problem of transferring variables to matrices of different orders is solved. To solve the significant digit overflow in the multiplication of transfer matrices, we propose a simple, effective method. Results suggest that dispersion curves differ in a low- frequency region when a porous layer is at the surface; otherwise, the difference is small.