位置:成果数据库 > 期刊 > 期刊详情页
一种视觉词软直方图的图像表示方法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:0
  • 页码:1787-1795
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京理工大学计算机学院智能信息技术北京市重点实验室,北京100081, [2]91635部队,北京102249
  • 相关基金:基金项目:国家自然科学基金(60973059,90920009)
  • 相关项目:实时双模态自动图像软标注与多关键词检索
中文摘要:

基于视觉词的统计建模和判别学习,提出一种视觉词软直方图的图像表示方法.假设属于同一视觉词的图像局部特征服从高斯混合分布,利用最大.最小后验伪概率判别学习方法从样本中估计该分布,计算局部特征与视觉词的相似度漯加图像中每个视觉词与对应局部特征的相似度,在全部视觉词集合上进行结果的归一化,得到图像的视觉词软直方图.讨论了两种具体实现方法:一种是基于分类的软直方图方法,该方法根据相似度最大原则建立局部特征与视觉词的对应关系;另一种是完全软直方图方法,该方法将每个局部特征匹配到所有视觉词.在数据库Caltech-4和PASCALVOC2006上的实验结果表明,该方法是有效的.

英文摘要:

This paper proposes a visual word soft-histogram for image representation based on statistical modeling and discriminative learning of visual words. This type of learning uses Gaussian mixture models (GMM) to reflect the appearance variation of each visual word and employs the max-min posterior pseudo-probabilities discriminative learning method to estimate GMMs of visual words. The similarities between each visual word and corresponding local features are computed, summed, and normalized to construct a soft-histogram. This paper also discusses the implementation of two representation methods. The first one is called classification-based soft histogram, in which each local feature is assigned to only one visual word with maximum similarity. The second one is called completely soft histogram, in which each local feature is assigned to all the visual words. The experimental results of Caltech-4 and PASCAL VOC 2006 confirm the effectiveness of this method.

同期刊论文项目
期刊论文 3 会议论文 6 专利 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609