位置:成果数据库 > 期刊 > 期刊详情页
基于构件层次的铰接杆系结构几何稳定性讨论
  • 期刊名称:固体力学学报,2006, 27(2):141-147。
  • 时间:0
  • 分类:TU311.2[建筑科学—结构工程] TP311.5[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学空间结构研究中心,杭州310027
  • 相关基金:国家自然科学基金(50578139)和高校博士点基金(20020335036)资助.
  • 相关项目:非自应力大位移索杆机构系统的形态学研究
中文摘要:

考察构件刚度和构件撤除对杆件系统几何稳定性的影响.从常规结构稳定理论的角度审视铰接杆件系统几何稳定性问题.基于结构稳定的能量准则和刚度矩阵的构成分析,重新考察了Maxwell准则和平衡矩阵准则的充分必要性.解释了构件零刚度和构件撤除对体系几何稳定性影响的一致性.利用自应力矩阵的特性,提出并证明了一种快速识别杆系结构中“必需杆”的方法.一种多根构件撤除后体系几何稳定性的判别准则进而被发展.该判别准则的数值效率体现在仅利用原结构平衡矩阵一次分解后的信息,杆件撤除后体系平衡矩阵的秩可通过两小规模矩阵秩之间的关系来表示.

英文摘要:

The geometrical stability of pin-bar assemblies and the effects of bar stiffness are reinvestigated from the viewpoints of conventional structural stability theory. Based on the energy criterion of structural stability and the constitution analysis of stiffness matrix, sufficient and necessary conditions of Maxwell rule and Equilibrium Matrix rule are discussed. The equivalence of zero bar stiffness and removal of the same bar to the geometrical stability is explained theoretically. By utilizing the properties of selfstress matrix, a technique for quickly distinguishing "necessary bars" is proposed. Further, a criterion to determine geometrical stability of pin-bar structures after removal of multiple bars is developed. This criterion is effective since it only depends on the matrix information obtained by one-time decomposition of the equilibrium matrix of original configuration. The rank of equilibrium matrix of updated assembly can be determined from a relationship between the ranks of two small-scale matrices.

同期刊论文项目
同项目期刊论文