主要研究了平面图的无圈边染色问题。证明了对平面图G,如果G不包含3,5圈,且G中任意两个4-圈都不共边,则无圈边染色猜想成立;并且,如果G不合3-圈,且任意两个4-圈不共点,则G的无圈边染色数不大于△(G)+3。
If a planar graph G contains no i-cycles, i = 3,5, and any two 4-cycles have no common edge, then the acyclic edge coloring conjecture holds. And if a planar graph G contains no 3-cycles and any two 4-cycles have no common vertex, then acyclic edge chromatic number of G is at most △ (G) + 3.