为了研究斜拉桥在满堂支架分段拆除的塔梁同步施工过程中主梁、主塔和斜拉索等结构力学性能的变化,通过Midas/Civil( multitier distributed applications services/Civil)有限元分析软件,实现了斜拉桥施工过程的结构力学性能计算分析。依托亚洲最大转体重量斜拉桥-邹城斜拉桥(主跨为110m+110m独塔双柱双跨双索面混凝土斜拉桥)为背景开展研究,采用弹性受压连接单元模拟满堂支架,空间梁单元模拟主梁、主塔,考虑现场实际施工过程,开展了邹城斜拉桥结构受力和变形的数值计算。对比分析了数值计算结果与现场实测数据分析结果。结果表明:拆除满堂支架前后,支架支反力计算值最大增加382kN,斜拉索索力计算最大变化值占该索索力的0.96%,实测索力最大变化值占该索索力的1.67%,主梁线型实测最大变化值为-7mm。斜拉桥主梁相应节段的斜拉索张拉完成,是满堂支架分段拆除的塔梁同步施工应用于现场的前提条件。
To investigate the change of mechanical properties of the beam, tower and cables during the tower and beam synchronous construction of the bridge together with segmental removing the full scaffold, the calculation model of the construction process of cable-stayed bridge was established by multitier distributed applications services/Civil ( Midas/ Civil) finite element software. Against the context of the maximum swivel weight of cable-stayed bridge in Asia-- Zoucheng cable-stayed bridge (the main span is 220 m, single tower, double column, double span and double cable plane prestressed concrete cable-stayed bridge), the structure stress and the deformation of the cable-stayed bridge were analyzed. Full scaffolds were simulated by elastic connection elements and beam and tower by spatial beam elements. The results of numerical calculation and field test data were compared and analyzed, which showed that, before and af- ter the demolition of full scaffold, the maximum added value of the support force was 382 kN, the calculated maximum value and the measured maximum value for the changes of the cable force were respectively 0. 96% and 1.67%, and the linear maximum variation was - 7 mm. The premise of the application of the construction method (tower and beam synch ronous construction of cable-stayed bridge together with segmental removing the full scaffold) is that the cable force of the corresponding segment of the beam should have been applied.